(t^2+4)+(5t^2-2t-7)=

Simple and best practice solution for (t^2+4)+(5t^2-2t-7)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (t^2+4)+(5t^2-2t-7)= equation:


Simplifying
(t2 + 4) + (5t2 + -2t + -7) = 0

Reorder the terms:
(4 + t2) + (5t2 + -2t + -7) = 0

Remove parenthesis around (4 + t2)
4 + t2 + (5t2 + -2t + -7) = 0

Reorder the terms:
4 + t2 + (-7 + -2t + 5t2) = 0

Remove parenthesis around (-7 + -2t + 5t2)
4 + t2 + -7 + -2t + 5t2 = 0

Reorder the terms:
4 + -7 + -2t + t2 + 5t2 = 0

Combine like terms: 4 + -7 = -3
-3 + -2t + t2 + 5t2 = 0

Combine like terms: t2 + 5t2 = 6t2
-3 + -2t + 6t2 = 0

Solving
-3 + -2t + 6t2 = 0

Solving for variable 't'.

Begin completing the square.  Divide all terms by
6 the coefficient of the squared term: 

Divide each side by '6'.
-0.5 + -0.3333333333t + t2 = 0

Move the constant term to the right:

Add '0.5' to each side of the equation.
-0.5 + -0.3333333333t + 0.5 + t2 = 0 + 0.5

Reorder the terms:
-0.5 + 0.5 + -0.3333333333t + t2 = 0 + 0.5

Combine like terms: -0.5 + 0.5 = 0.0
0.0 + -0.3333333333t + t2 = 0 + 0.5
-0.3333333333t + t2 = 0 + 0.5

Combine like terms: 0 + 0.5 = 0.5
-0.3333333333t + t2 = 0.5

The t term is -0.3333333333t.  Take half its coefficient (-0.1666666667).
Square it (0.02777777779) and add it to both sides.

Add '0.02777777779' to each side of the equation.
-0.3333333333t + 0.02777777779 + t2 = 0.5 + 0.02777777779

Reorder the terms:
0.02777777779 + -0.3333333333t + t2 = 0.5 + 0.02777777779

Combine like terms: 0.5 + 0.02777777779 = 0.52777777779
0.02777777779 + -0.3333333333t + t2 = 0.52777777779

Factor a perfect square on the left side:
(t + -0.1666666667)(t + -0.1666666667) = 0.52777777779

Calculate the square root of the right side: 0.726483157

Break this problem into two subproblems by setting 
(t + -0.1666666667) equal to 0.726483157 and -0.726483157.

Subproblem 1

t + -0.1666666667 = 0.726483157 Simplifying t + -0.1666666667 = 0.726483157 Reorder the terms: -0.1666666667 + t = 0.726483157 Solving -0.1666666667 + t = 0.726483157 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '0.1666666667' to each side of the equation. -0.1666666667 + 0.1666666667 + t = 0.726483157 + 0.1666666667 Combine like terms: -0.1666666667 + 0.1666666667 = 0.0000000000 0.0000000000 + t = 0.726483157 + 0.1666666667 t = 0.726483157 + 0.1666666667 Combine like terms: 0.726483157 + 0.1666666667 = 0.8931498237 t = 0.8931498237 Simplifying t = 0.8931498237

Subproblem 2

t + -0.1666666667 = -0.726483157 Simplifying t + -0.1666666667 = -0.726483157 Reorder the terms: -0.1666666667 + t = -0.726483157 Solving -0.1666666667 + t = -0.726483157 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '0.1666666667' to each side of the equation. -0.1666666667 + 0.1666666667 + t = -0.726483157 + 0.1666666667 Combine like terms: -0.1666666667 + 0.1666666667 = 0.0000000000 0.0000000000 + t = -0.726483157 + 0.1666666667 t = -0.726483157 + 0.1666666667 Combine like terms: -0.726483157 + 0.1666666667 = -0.5598164903 t = -0.5598164903 Simplifying t = -0.5598164903

Solution

The solution to the problem is based on the solutions from the subproblems. t = {0.8931498237, -0.5598164903}

See similar equations:

| -4(t-1)+6t=5t-2 | | -8=n+1 | | -8x+-4=-5x+5 | | 4m^4+17m^2+4=0 | | x(x+7)+5(x+7)=0 | | 12x-293=2x-13 | | (6x-3)-(7x^2-x-3)= | | 16=-2(5x+7) | | -(3/5)x=6/35 | | x^2+9x+7=0 | | 10x-181=4x-7 | | -100-3x=118 | | -n-24=5n | | (x+5)(x+2)=0 | | 2[3-2(y+5)]=30 | | 2x-1=11-91 | | 28-6x=3x+16 | | 48-6x=3x-17 | | N+11=1 | | 7-9x=19-16x | | 8(2x+1)=4(7x+7) | | Y-5=-5 | | 12x-18=30 | | 15x+4=9x-8 | | (y/7)+1=(2/7) | | (x/4)-2=2 | | T+12=10 | | 6-9x=120-30x | | 2+n=16 | | Z-6=10 | | 6x+(3x-9)=90 | | 3x^2+8x+8= |

Equations solver categories